17,726 research outputs found

    Comparison of two model frameworks for fiber dispersion in the elasticity of soft biological tissues

    Get PDF
    This study compares two models that are used to describe the elastic properties of fiber-reinforced materials with dispersed fibers, in particular some soft biological tissues such as arterial walls and cartilages. The two model approaches involve different constitutive frameworks, one being based on a generalized structure tensor (GST) and the other on the method of angular integration (AI). By using two representative examples, with the same number of parameters for each model, it is shown that the predictions of the two models are virtually identical for a significant range of large deformations, which contradicts conclusions contained in several papers that are based on faulty analysis. Additionally, each of the models is fitted to sets of uniaxial data from the circumferential and axial directions of the adventitia of a human aorta, both models providing excellent agreement with the data. While the predictions of the two models are comparable and exclusion of compressed fibers can be accommodated by either model, it is well known that the AI model requires more computational time than the GST model when used within a finite element environment, in particular if compressed fibers are excluded

    Growth of solid hcp \^4He off the melting curve

    Get PDF
    We report studies of the growth of solid hcp \4he at pressures higher than the bulk freezing pressure using a cell design that allows us to inject atoms into the solid. Near the melting curve during injection we observe random events during which the pressure recorded in the cell drops abruptly. These events are accompanied by transient increases in the temperature of the cell. We discuss these transients and conclude that they represent the solidification of meta-stable liquid regions and the associated relief of strain in the local solid. We also observe that further from the melting curve the transients are no longer recorded, but that we can continue to add atoms to the solid, increasing its density at fixed volume. We document these changes in density with respect to changes in the chemical potential as a function of temperature and discuss these in the context of recent theoretical work.Comment: 7 pages, 8 figure

    Modeling of fibrous biological tissues with a general invariant that excludes compressed fibers

    Get PDF
    Dispersed collagen fibers in fibrous soft biological tissues have a significant effect on the overall mechanical behavior of the tissues. Constitutive modeling of the detailed structure obtained by using advanced imaging modalities has been investigated extensively in the last decade. In particular, our group has previously proposed a fiber dispersion model based on a generalized structure tensor. However, the fiber tension–compression switch described in that study is unable to exclude compressed fibers within a dispersion and the model requires modification so as to avoid some unphysical effects. In a recent paper we have proposed a method which avoids such problems, but in this present study we introduce an alternative approach by using a new general invariant that only depends on the fibers under tension so that compressed fibers within a dispersion do not contribute to the strain-energy function. We then provide expressions for the associated Cauchy stress and elasticity tensors in a decoupled form. We have also implemented the proposed model in a finite element analysis program and illustrated the implementation with three representative examples: simple tension and compression, simple shear, and unconfined compression on articular cartilage. We have obtained very good agreement with the analytical solutions that are available for the first two examples. The third example shows the efficacy of the fibrous tissue model in a larger scale simulation. For comparison we also provide results for the three examples with the compressed fibers included, and the results are completely different. If the distribution of collagen fibers is such that it is appropriate to exclude compressed fibers then such a model should be adopted

    Adaptation Effectiveness and Free-Riding Incentives in International Environmental Agreements

    Get PDF
    While an international agreement over the reduction of greenhouse gases (GHGs) emissions proves to be elusive, there is a large and growing support for investment in developing more effective technologies to adapt to climate change. We show that an increase in effectiveness of adaptation will diminish the incentive of individual countries to free-ride on a global agreement over emissions. Moreover, we show that this positive effect of an increase in adaptation's effectiveness can also be accompanied by an increase in the gains from global cooperation over GHGs emissions.adaptation;climate change;international environmental agreements;transboundary pollution

    Charm Meson Mixing: An Experimental Review

    Full text link
    We review current experimental results on charm mixing and CP violation. We survey experimental techniques, including time-dependent, time-independent, and quantum-correlated measurements. We review techniques that use a slow pion tag from D*+ --> pi+ D0 + c.c. decays and those that do not, and cover two-body and multi-body D0 decay modes. We provide a summary of D-mixing results to date and comment on future experimental prospects at the LHC and other new or planned facilities.Comment: 53 pages, 29 figures, 8 table

    The late time radio emission from SN 1993J at meter wavelengths

    Full text link
    We present the investigations of SN 1993J using low frequency observations with the Giant Meterwave Radio Telescope. We analyze the light curves of SN 1993J at 1420, 610, 325 and 243 MHz during 7.5107.5-10 years since explosion.The supernova has become optically thin early on in the 1420 MHz and 610 MHz bands while it has only recently entered the optically thin phase in the 325 MHz band. The radio light curve in the 235 MHz band is more or less flat. This indicates that the supernova is undergoing a transition from an optically thick to optically thin limit in this frequency band. In addition, we analyze the SN radio spectra at five epochs on day 3000, 3200, 3266, 3460 and 3730 since explosion. Day 3200 spectrum shows a synchrotron cooling break. SN 1993J is the only young supernova for which the magnetic field and the size of the radio emitting region are determined through unrelated methods. Thus the mechanism that controls the evolution of the radio spectra can be identified. We suggest that at all epochs, the synchrotron self absorption mechanism is primarily responsible for the turn-over in the spectra. Light curve models based on free free absorption in homogeneous or inhomogeneous media at high frequencies overpredict the flux densities at low frequencies. The discrepancy is increasingly larger at lower and lower frequencies. We suggest that an extra opacity, sensitively dependent on frequency, is likely to account for the difference at lower frequencies. The evolution of the magnetic field (determined from synchrotron self absorption turn-over) is roughly consistent with Bt1B \propto t^{-1}. Radio spectral index in the optically thin part evolves from α0.81.0\alpha \sim 0.8-1.0 at few tens of days to 0.6\sim 0.6 in about 10 years.Comment: 37 pages, 9 figures in LaTex; scheduled for ApJ 10 September 2004, v612 issue; send comments to: [email protected]

    Observational constraints on interstellar dust models

    Get PDF
    No single model has been able to account for all of the observed spectroscopic properties of interstellar or circumstellar dust. The reason for this is that, despite the agreement that the grains are composed of silicaceous/metal oxide and carbonaceous material, there is strong disagreement as to their exact structure and composition. This led Draine and Lee (1984) to use interstellar extinction data to define an interstellar graphitic material; new observational findings have made even that identification uncertain. But the great advantage of their approach is that they used observations at all of the wavelengths available to define the material. Here, the authors attempt a variation of that approach. They examine recent UV and IR data and attempt to put constraints on the possible types of interstellar grain composition, and to connect these constraints with grain models. A summary of some of the important constraints imposed by the observations is given

    Mass flow through solid 4He induced by the fountain effect

    Full text link
    Using an apparatus that allows superfluid liquid 4He to be in contact with hcp solid \4he at pressures greater than the bulk melting pressure of the solid, we have performed experiments that show evidence for 4He mass flux through the solid and the likely presence of superfluid inside the solid. We present results that show that a thermomechanical equilibrium in quantitative agreement with the fountain effect exists between two liquid reservoirs connected to each other through two superfluid-filled Vycor rods in series with a chamber filled with solid 4He. We use the thermomechanical effect to induce flow through the solid and measure the flow rate. On cooling, mass flux appears near T = 600 mK and rises smoothly as the temperature is lowered. Near T = 75 mK a sharp drop in the flux is present. The flux increases as the temperature is reduced below 75 mK. We comment on possible causes of this flux minimum.Comment: 20 pages, 22 figures, 7 table
    corecore